

Evaluation of ESX Server Under CPU Intensive
Workloads

Terry Wilcox Phil Windley, PhD
{terryw, windley}@cs.byu.edu

Computer Science Department, Brigham Young University

Executive Summary
Virtual machines are used by IT departments to provide better hardware utilization and to
isolate users and programs from each other. We explore how configuration changes affect
the throughput of virtual machines hosted on ESX Server during CPU intensive
workloads. In particular we explore how Hyper-Threading, Virtual SMP, and the amount
of RAM allocated affect throughput.

Hyper-Threading is Intel’s implementation of simultaneous multithreading technology
and was introduced with the Xeon processor. Virtual SMP allows ESX Server to host
virtual machines with two virtual processors.
Our tests were run on two Dell 6650 quad processor 2.20 GHz Xeon servers with 16GB
of RAM, a Gigabit Ethernet NIC, and a 1.3 TB SAN. Our benchmarks were run on Linux
kernel 2.4.21-15.ELsmp and compiled by gcc 3.2.3 unless specifically stated otherwise.

We used SPEC’s cpu2000 benchmark suite to obtain our results. No attempt was made to
optimize the benchmarks for the virtual machines and default settings were used in all
cases. Unused virtual machines were suspended before each test. Each benchmark was
run five times to ensure that the results were consistent and repeatable. We used the
RDTSC instruction to time the benchmarks.
The table below summarizes our benchmark test cases.

Test Cases Description
Scalability
Hyper-Threading, 1 CPU This compares throughput of one CPU virtual machines with

Hyper-Threading both enabled and disabled.
Hyper-Threading, 2 CPUs This compares the throughput of two CPU virtual machines

with Hyper-Threading both enabled and disabled.
1 CPU vs. 2 CPUs This compares the throughput of one and two CPU virtual

machines.
Resource Allocation
Memory Subsystem This tracks throughput as the amount of RAM allocated to a

virtual machine increases.
Table 1 - Summary of benchmark test cases.

Hyper-Threading significantly increases throughput for CPU intensive workloads. When
twelve virtual CPUs were benchmarked and Hyper-Threading was enabled the
throughput of single CPU virtual machines increased 21% and the throughput of two

CPU virtual machines increased 23% compared to when Hyper-Threading was disabled.
Since Hyper-Threading is most effective with large numbers of virtual machines a host
that is Hyper-Threading enabled should have at least two virtual CPUs in aggregate for
every physical CPU. Using fewer virtual CPUs reduces the benefits of Hyper-Threading.

Virtual machines should only be allocated a single virtual CPU. From empirical results it
appears that Virtual SMP lowers throughput by 10%. Virtual SMP should not be used
unless the problem domain requires it.
Allocating excessive memory did not increase the performance of virtual machines.
When a benchmark isolated the memory subsystem and was run on a virtual machine
running Linux allocating too much memory lowered throughput between 6%-12%. In
contrast allocating excessive memory to virtual machines running Windows XP SP2 did
not affect performance for any benchmark we ran. Virtual machines should not be
allocated more resources than they are expected to use for their current task because it
will not increase performance and there may be hidden costs for managing increased
amounts of resources.
In summary:

• Single CPU virtual machines scale better than virtual machines using Virtual
SMP.

• Hyper-Threading increases throughput if there are a large number of virtual
CPUs, but makes no difference if the number of virtual CPUs is less than or equal
to the number of physical CPUs.

• Do not allocate excessive resources to virtual machines. Additional resources may
hurt performance.

Abstract

We present a summary of our evaluation of VMWare ESX Server 2.5.2. In particular we
confirm and work around known timing issues with guest operating systems running on
ESX server. Our work validates and adds to the work of other groups modeling the
behavior of ESX Server during CPU intensive workloads by exploring in more detail the
effects of Hyper-Threading and the overhead of Virtual SMP. We report and measure a
previously unknown performance penalty for allocating too much RAM in virtual
machines with Linux as the guest operating system. This paper also describes the testbed
we used to manage and run our tests including a virtualization test management system
we developed to run the tests we performed. We describe timing issues that affect
performance testing on ESX Server and a method for measuring runtimes that gives
accurate results.

Introduction

A virtual machine monitor (VMM) is a piece of software that provides an environment
that attempts to closely simulate physical hardware. A virtual machine (VM) is the
environment created by a VMM. With the exception of timing dependencies any program
run inside a VM should exhibit the same behavior as the program would exhibit if it were
run on physical hardware. Some reasons why virtualization is used by corporate IT
departments include:

• Increased hardware utilization.
• Increased hardware scalability.
• Better hardware fault containment.
• Better isolation of users, programs, and physical resources.
• Allowing the transparent migration of a server between physical hosts.

In this paper we explore how configuration changes affect the throughput of virtual
machines during CPU intensive workloads. In particular we explore how Hyper-
Threading, Virtual SMP, and the amount of RAM allocated affect throughput.

In our work we will use VMware ESX Server 2.5.2 as the VMM.

Background
Hyper-Threading is Intel’s implementation of simultaneous multithreading technology
and was first introduced with Intel’s Xeon processor. Hyper-Threading allows the
processor to use execution units that are normally unused (such was when the processor
is waiting because of a cache miss). The actual performance improvement is application
dependent (Intel).
ESX Server is a native VM system. A native VM system is one where the VMM is the
only software on the machine that runs in the highest privilege level of the host machine.
In contrast a VMM that is installed on a host that runs an operating system independent
of the VMM is called a hosted VM system. If the VMM on a hosted system runs in a
privilege level below the host’s operating system it is called a user-mode hosted VM
system. VMware Server and Microsoft Virtual PC are two examples of user-mode hosted
VM systems. VMware claims that since ESX Server runs directly on the hardware I/O
performance is significantly higher on ESX Server than on user-mode hosted VM
systems (Waldspurger 2002; Smith, 2005).

VMware runs unmodified guest operating systems. Paravirtulization achieves higher
performance than traditional VM systems by presenting an interface that is similar, but
not identical to the underlying hardware. The changes are intended to make virtualization
more efficient, but they also require that guest operating systems be rewritten to only use
the new interface. Xen and Denali are two well-known paravirtaulization systems
(Barham 2003; Whitaker 2002).

Virtual SMP is an extension of ESX Server created by VMware that allows ESX Server
to create and host virtual machines that are allocated two processors. If Virtual SMP is
installed ESX Server allows guest virtual machines to be allocated two virtual CPUs.

Related Work

VMware published a white paper that explores the behavior of ESX Server under loads
similar to what we consider here (VMware 2005A). Results from the white paper include:

• Guaranteed CPU resource minimums and maximums work as advertised.
• Page sharing has negligible CPU overhead and can result in significant memory

savings.
• Hyper-Threading increases throughput of single CPU virtual machines under

CPU intensive workloads.
• A native operating system has throughput approximately 12%-14% higher than

the same operating system running inside a virtual machine hosted by ESX
Server.

VMware and a group from IBM reported on the suitability of using ESX Server to host
IBM’s WebSphere application server (High-Volume Web Site 2004). The group’s results
include the following:

• ESX Server 2 effectively allocates CPU shares according to priorities set by users.
• The overhead of ESX Server compared to an operating system running directly on

hardware is between 12%-15%.

Hardware and System Setup

Hardware

The machines we used to run most of our tests were two Dell 6650 quad processor
2.20GHz Xeon servers with 16GB of RAM, a Broadcom NetXtreme BCM5700 Gigabit
Ethernet NIC, and an EMC CLARiiON CX 300 storage area network with over 1.3 TB of
storage. The virtualization testbed is shown in Figure 1. A diagram showing the
interconnections is shown in Figure 2.

Figure 1 – The Enterprise Computing Laboratory Virtualization Testbed

A small number of tests were run on a ProLiant BL25p with two Opteron Processors 250
which ran at 2406 MHz. This machine had 16GB of RAM.

Figure 2 – The environment the majority of our tests were run involved two Dell 6650’s connected to
a SAN and controlled through a Dell 1750.

Operating Systems

We ran our tests with various guest operating systems, but the results presented in this
paper used Linux kernel 2.4.21-15.ELsmp (hereafter referred to as Linux) and compiled
using gcc 3.2.3 unless specifically stated otherwise. This operating system was selected
because it is supported by Virtual SMP allowing us to allocate one or two CPUs to a
single virtual machine.

Benchmark Methodology

The performance issues we explore in this paper focus on CPU resources and so the
benchmarks are CPU intensive. We present here results from using the following
benchmark suites:

• FreeBench
• Spec cpu2000

FreeBench was used to help gather initial results due to its short runtimes. Spec cpu2000
was used to gather most of the results presented here (FreeBench; Henning 2000).

No attempt was made to optimize the benchmarks for the virtual machines and default
settings were used in all cases. Unused virtual machines were suspended before each test
so that they wouldn’t affect CPU usage. Each benchmark was run five times to ensure
that the results from the benchmarks were consistent and repeatable. The reported results
are the average of the test runs.

More detailed information about the benchmarks we used can be found in Appendix A.

Timing Methodology

Figure 3 – Comparison of time reported by virtual machines after a benchmark run compared with
the actual amount of time that had passed. The guest operating system was Linux running the
FreeBench benchmark.

Initial benchmark runs demonstrated abnormal results under certain conditions. When a
small number of virtual machines were running the results of the benchmarks were
consistent with timers external to the virtual machines. For large numbers of virtual
machines, however, the times reported by the virtual machines did not agree with our
external timers. Figure 3 illustrates the difference between reported time and wall-clock
time for a benchmark run using Linux. Notice that reported time and wall-clock time are
nearly identical until 20 virtual machines are running simultaneously and when more than

20 virtual machines are running simultaneously the time reported by the virtual machines
stops increasing.

This is a known issue with some operating systems running on ESX Server (VMware
2005B). The affected operating systems are not processing their timing interrupts as fast
as ESX server sends them causing those interrupts to be lost. VMware provides a set of
tools that periodically synchronizes the guest operating systems time with the host
machine. Rerunning the benchmarks with this tool showed the same pattern, as the tool
did not synchronize the time sufficiently frequently to affect our benchmarks.

We timed our benchmarks using a method introduced in a VMware white paper
(VMware 2005A). We used the RDTSC instruction to time workloads. RDTSC is a
benchmarking instruction that returns the value of a 64-bit register (the TSC) that is
incremented every clock cycle. We also used the RDTSC instruction and modified the
virtual machines to use the host machine’s TSC so that our benchmark results would be
independent of timing issues on all operating systems.

The TSC was read at the beginning and end of each benchmark run. The difference
between the two values is used to determine how long the benchmark ran.

We use CPU throughput of the system to report our results. We have the virtual machines
perform a workload and throughput is measured as the number of times the workload is
completed by the system for a given time period.

Benchmark Test Cases
The test cases covered in this paper are summarized in the table below.

Test Cases Description
Scalability
Hyper-Threading, 1 CPU This compares throughput of one CPU virtual machines with

Hyper-Threading both enabled and disabled.
Hyper-Threading, 2 CPU This compares the throughput of two CPU virtual machines

with Hyper-Threading both enabled and disabled.
1 CPU vs. 2 CPUs This compares the throughput of one and two CPU virtual

machines.
Resource Allocation
Memory Subsystem This tracks throughput as the amount of RAM allocated to a

virtual machine increases.
Table 2 - Summary of benchmark test cases.

The scalability tests measure throughput as the number of active virtual machines
increases. The resource allocation test measures throughput as the amount of resources
(memory) allocated changes.

Testing Framework

We managed our tests using a distributed application created using Ruby on Rails. Figure
4 shows a screenshot of the test management software.

Figure 4 – Screenshot of the program we used to manage our tests. The virtual machines contact the
Rails application to get test parameters and to report results.

Tests are setup by entering the test parameters into the application. The parameters
include information about the environment (such as how much RAM is allocated) and the
test itself (such as which benchmark to run).
A script is run on each virtual machine involved in the test. The virtual machine contacts
the test management system and gets the information about which benchmarks to run.
Our test management system greatly reduced the time required to setup and collect the
results from our tests. Starting each test by hand was prone to error because the
commands to start the tests are long and must be typed in perfectly for each virtual
machine involved in the test. Collecting results by hand was error prone and time
consuming. When large numbers of virtual machines were involved in the test collecting
the output files and entering them into a spreadsheet often took more than thirty minutes

for each test. With our test management system each test took only five minutes to setup
and collect the results regardless of the number of virtual machines involved in the test.

Figure 5 - The results of a test are along with the IP number of the virtual machine to identify which
virtual machine submitted the results for tests involving many virtual machines.

The results are reported back to the application at the end of the test run as shown in
Figure 5. The IP address of the reporting virtual machine is used to uniquely identify
which virtual machine submitted the results for tests that use multiple virtual machines.

The test management application groups the results based on the type of test that was run.
The results were then transferred to a spreadsheet for further processing.

CPU Intensive Workloads

This section reports our results for CPU intensive workloads. First we compare the
throughput of single CPU virtual machines with Hyper-Threading enabled and disabled.
Next we compare the throughput of two CPU virtual machines with Hyper-Threading
enabled and disabled. Finally we compare the throughput of single CPU and two CPU
virtual machines. The results shown in the graphs and tables below are for the gzip
benchmark in the cpu2000 suite. We only present the results for gzip here because the
other results are similar.

The gzip benchmark is based on the popular data compression program gzip (GNU zip).
It uses Lempel-Ziv coding (LZ77) as its compression algorithm. All work is done in
memory to help isolate the CPU and memory subsystem.

The single CPU virtual machines were allocated 512MB of RAM and the two CPU
virtual machines were allocated 1024MB of RAM. All other virtual machine resources
were left at the default values. Results are reported relative to the throughput of a single
virtual machine running with Hyper-Threading disabled. The hardware used to run these
tests had four CPUs.

Hyper-Threading Comparison With One Virtual CPU

Figure 6 – CPU throughput of virtual machines running Linux and allocated a single CPU with
Hyper-Threading disabled for the gzip benchmark.

Figure 6 shows the CPU throughput of virtual machines with a single virtual CPU when
Hyper-Threading is disabled. With Hyper-Threading disabled throughput increased
linearly until four virtual CPUs were running simultaneously. When more than four
virtual CPUs were running at the same time throughput decreased marginally. From four
virtual CPUs to twelve virtual CPUs throughput decreased 2%. Since each virtual
machine is allocated a single virtual CPU the number of virtual machines is equal to the
number of virtual CPUs.

Figure 7 – CPU throughput of virtual machines running Linux and allocated a single virtual CPU
with Hyper-Threading enabled for the gzip benchmark.

Figure 7 shows the CPU throughput of virtual machines with a single CPU when Hyper-
Threading is enabled. With Hyper-Threading enabled throughput increased linearly from
one to four and from four to eight virtual CPUs. The increase from four to eight virtual
CPUs was more modest than the initial increase. When more than eight virtual CPUs are
running simultaneously throughput increases marginally. Throughput increased 17%
from four virtual CPUs to twelve virtual CPUs. Since each virtual machine is allocated a
single virtual CPU the number of virtual machines is equal to the number of virtual
CPUs.

Figure 8 – CPU throughput comparison of virtual machines running Linux and allocated a single
virtual CPU with Hyper-Threading enabled and disabled for the gzip benchmark.

Figure 8 compares the CPU throughputs of virtual machines allocated a single virtual
CPU when Hyper-Threading is enabled and disabled. Notice that from one virtual CPU to
four virtual CPUs Hyper-Threading has no impact on throughput. When more than four
virtual CPUs are running simultaneously Hyper-Threading enabled virtual machines have
higher throughput than Hyper-Threading disabled virtual machines. The throughput of
Hyper-Threading enabled virtual machines is 21% higher than the throughput of virtual
machines without Hyper-Threading when twelve virtual CPUs are running
simultaneously. Since each virtual machine is allocated a single virtual CPU the number
of virtual machines is equal to the number of virtual CPUs.

Virtual CPUs HT Enabled HT Disabled Ratio
1 1.00 1.00 1.00
2 2.00 2.01 1.00
4 3.94 3.91 1.01
6 4.22 3.93 1.07
8 4.55 3.84 1.18

10 4.57 3.79 1.21
12 4.64 3.83 1.21

Table 3 – Normalized results for Linux running gzip with single CPU virtual machines running Linux
for the gzip benchmark.

The throughput increases linearly to four virtual CPUs because the hardware used to run
these tests had four CPUs. The throughput at four virtual CPUs was not quite four times
the throughput of one virtual CPU because of the overhead of running ESX Server. For
large numbers of virtual machines Hyper-Threading enabled has significantly higher
throughput for CPU intensive workloads. When Hyper-Threading is enabled having two
single CPU virtual machines for every physical CPU in the host machine maximizes
throughput. When less virtual machines are running on the host some of the potential
benefits of Hyper-Threading are lost.

Hyper-Threading Comparison With Two Virtual CPUs

Figure 9 - CPU throughput of virtual machines running Linux and allocated two virtual CPUs with
Hyper-Threading disabled for the gzip benchmark.

Figure 9 shows CPU throughput of virtual machines with two virtual CPUs when Hyper-
Threading is disabled. With Hyper-Threading is disabled throughput increased linearly
until four virtual CPUs were running simultaneously. When more than four virtual CPUs
were running at the same time throughput decreased slightly. From four virtual CPUs to
twelve virtual CPUs throughput decreased 4%. Since each virtual machine was allocated
two virtual CPUs the number of virtual machines involved in a test was half the number
of virtual CPUs used in that test.

Figure 10 - CPU throughput of virtual machines running Linux and allocated two virtual CPUs with
Hyper-Threading enabled for the gzip benchmark.

Figure 10 shows the CPU throughput of virtual machines allocated two virtual CPUs
when Hyper-Threading is enabled. With Hyper-Threading enabled throughput doubled
from two to four virtual CPUs and throughput continued to increase from four to eight
virtual CPUs. After eight virtual CPUs were running throughput did not change
significantly. Throughput increased 17% from four virtual CPUs to twelve virtual CPUs.
Since each virtual machine was allocated two virtual CPUs the number of virtual
machines involved in a test was half the number of virtual CPUs used in that test.

Figure 11 - CPU throughput comparison of virtual machines running Linux and allocated a single
virtual CPU with Hyper-Threading enabled and disabled for the gzip benchmark.

Figure 11 compares the CPU throughputs of virtual machines allocated two virtual CPUs
when Hyper-Threading is enabled and disabled. Notice that when two virtual CPUs or
four virtual CPUs are running simultaneously Hyper-Threading has no impact on
throughput. When more than four virtual CPUs are running simultaneously Hyper-
Threading enabled has higher throughput than Hyper-Threading disabled. The throughput
of Hyper-Threading enabled virtual machines is 23% higher than the throughput of
virtual machines without Hyper-Threading when twelve virtual CPUs are running
simultaneously. Since each virtual machine was allocated two virtual CPUs the number
of virtual machines involved in a test was half the number of virtual CPUs used in that
test.

Virtual CPUs HT Enabled HT Disabled Ratio

2 1.83 1.83 1.00

4 3.60 3.58 1.01

6 3.81 3.36 1.13

8 4.27 3.41 1.25

10 4.18 3.34 1.25

12 4.22 3.44 1.23

Table 4 - Normalized results for Linux running gzip with each virtual machine allocated 1024MB of
RAM and two virtual CPUs.

The throughput nearly doubles from two virtual CPUs to four virtual CPUs because the
hardware used to run these tests had four CPUs. The throughput at four virtual CPUs was
not quite double the throughput of two virtual CPUs because of the overhead of running
ESX Server. For large numbers of virtual machines Hyper-Threading enabled has
significantly higher throughput for CPU intensive workloads. When Hyper-Threading is
enabled having one virtual machine with two CPUs for every physical CPU in the host
machine maximizes throughput. When less virtual machines are running on the host some
of the potential benefits of Hyper-Threading are lost.

Virtual SMP

Figure 12 – CPU throughput comparison of single CPU virtual machines and two CPU virtual
machines with Linux running gzip.

Figure 12 compares the CPU throughputs of single CPU virtual machines and virtual
machines allocated two virtual CPUs when Hyper-Threading is disabled. As the number
of virtual CPUs running simultaneously increase throughput is consistently higher for
single CPU virtual machines than for two CPU virtual machines. The throughput
difference ranges between 9%-17% where most values are between 10%-13%. The
number of single CPU virtual machines involved in a test is equal to the number of
virtual CPUs. The number of two CPU virtual machines involved in a test is half of the
number of virtual CPUs.

Virtual CPUs Single CPU Two CPUs Ratio
1 1.00 -- --
2 2.01 1.83 1.10
4 3.91 3.58 1.09
6 3.93 3.36 1.17
8 3.84 3.41 1.13

10 3.79 3.34 1.13
12 3.83 3.44 1.11

Table 5 - Normalized results for CPU throughput of single CPU virtual machines and two CPU
virtual machines when Hyper-Threading is disabled with Linux as the guest OS running gzip.

Figure 13 - Comparison of one and two CPU virtual machines when Hyper-Threading is enabled.
Each single CPU virtual machine was allocated 512MB of RAM and each two CPU virtual machine
was allocated 1024MB of RAM. The guest operating system was Linux and the benchmark was gzip.

Figure 13 compares the throughput of virtual machines allocated a single virtual CPU and
virtual machines allocated two virtual CPUs when Hyper-Threading is enabled. As the
number of virtual CPUs running simultaneously increase the gap between the throughput
for one CPU virtual machines and two CPU virtual machines goes from 7% to 11%.

Virtual CPUs Single CPU Two CPUs Ratio
1 1.00 -- --
2 2.00 1.83 1.09
4 3.94 3.60 1.10
6 4.22 3.81 1.11
8 4.55 4.27 1.07

10 4.57 4.18 1.09
12 4.64 4.22 1.10

Table 6 - Normalized results for CPU throughput for single CPU virtual machines and two CPU
virtual machines when Hyper-Threading is enabled and Linux is the guest OS running gzip.

Single CPU virtual machines scale better than virtual machines using Virtual SMP.
Virtual SMP should not be used unless the problem domain requires the virtual machine
to have two processors.

Conclusions from CPU Intensive Workloads
Hyper-Threading significantly increases throughput for CPU intensive workloads. When
twelve virtual CPUs were benchmarked and Hyper-Threading was enabled the
throughput of single CPU virtual machines increased 21% and the throughput of two
CPU virtual machines increased 23% compared to when Hyper-Threading was disabled.
Since Hyper-Threading is most effective with large numbers of virtual machines a host
that is Hyper-Threading enabled should have at least two virtual CPUs for every physical
CPU. Using fewer virtual CPUs reduces the benefits of Hyper-Threading.

Virtual CPUs Improvement for Single
CPU Virtual Machines

Improvement for Two
CPU Virtual Machines

1 1.00 --
2 1.00 1.00
4 1.01 1.01
6 1.07 1.13
8 1.18 1.25
10 1.21 1.25
12 1.21 1.23

Table 7 – The improvement of CPU throughput when Hyper-Threading is enabled compared to
when Hyper-Threading is disabled with Linux as the guest operating system running the gzip
benchmark.

Virtual machines should only be allocated one CPU. From empirical results it appears
that Virtual SMP lowers throughput by 10%. Virtual SMP should not be used unless the
problem domain requires it.

Virtual CPUs Improvement With
Hyper-Threading
Disabled

Improvement With
Hyper-Threading
Enabled

1 -- --
2 1.10 1.09
4 1.09 1.10
6 1.17 1.11
8 1.13 1.07
10 1.13 1.09
12 1.11 1.10

Table 8 - The ratio of CPU throughput of single CPU virtual machines compared to the CPU
throughput of virtual machines with two virtual CPUs.

Memory

This section reports our results for the memory subsystem workloads. We ran the SPEC
cpu2000 benchmarks on virtual machines hosting Linux and Windows XP SP2 to
compare throughput as a function of the amount of memory allocated to the virtual
machine. Hyper-Threading had negligible effect on these tests. The virtual machines used
in these tests were only allocated one virtual CPU.

Linux Memory Subsystem Test

Figure 14 – Comparison of throughput of virtual machines running Linux as a function of RAM.

Figure 14 shows the CPU throughput as a function of RAM of the three benchmarks in
the cpu2000 suite that best isolate the memory subsystem with Linux as the guest
operating system. Notice that they had noticeable drops in throughput as the amount of
RAM allocated to the virtual machine increased. The throughput of the three benchmarks
that are described as exercising the memory subsystem in the cpu2000 suite dropped
between 5%-11%.

RAM gzip gcc bzip2
128 0.411 0.680 0.704
256 0.963 0.997 0.955
384 0.994 0.997 0.995
512 1.000 1.000 0.996
640 0.996 0.998 1.000

1024 0.951 0.929 0.967
2048 0.918 0.887 0.954
3072 0.926 0.889 0.953

Table 9 – Normalized results for Linux as a function of RAM. The benchmarks shown here are the
ones from the integer component of the cpu2000 suite that best isolate the memory subsystem.

Figure 15 - Comparison of throughput of virtual machines running Linux as a function of RAM.

The other benchmarks in the cpu2000 suite are shown in figure 15. As before the guest
operating system is Linux. The benchmarks that do not isolate the memory subsystem
only have a mild drop in performance. The biggest performance drop reported among the
group is 4% with the average only being 2%.

RAM vpr Mcf crafty parser eon perlbmk gap vortex twolf
128 0.982 1.000 0.995 1.000 1.000 0.916 0.033 0.989 0.973
256 0.993 0.989 1.000 1.000 0.998 1.000 0.983 1.000 0.973
384 0.992 0.982 0.994 0.992 0.996 1.000 0.994 0.999 1.000
512 1.000 0.989 0.993 0.995 0.998 0.984 1.000 0.993 0.975
640 0.995 0.988 0.994 0.992 1.000 0.996 0.998 0.996 0.968

1024 0.990 0.999 0.992 0.993 1.000 0.972 0.987 0.974 0.991
2048 0.988 0.983 0.975 0.994 0.991 0.961 0.977 0.967 0.976
3072 0.985 0.966 0.972 0.994 0.994 0.961 0.979 0.964 0.975

Table 10 - Normalized results for Linux as a function of RAM. The benchmarks shown here are the
ones from the integer component of the cpu2000 suite that best isolate the memory subsystem.

Windows XP Memory Subsystem Test

Figure 16 - Comparison of throughput of virtual machines running Windows XP SP2 as a function of
RAM.

Figure 16 shows the CPU throughput of three benchmarks in the cpu2000 suite which
best isolate the memory subsystem on Windows XP SP2. In contrast to virtual machines
running Linux, virtual machines running Windows XP SP2 suffered no lose in throughput
as the amount of RAM allocated to the virtual machines increased for benchmarks that
isolate the memory subsystem.

RAM gzip gcc bzip2
128 0.476 0.669 0.731
256 0.929 0.984 0.937
384 0.983 0.985 0.988
512 0.984 0.982 0.987
640 0.985 0.972 0.977

1024 0.985 0.979 0.989
2048 0.992 0.988 0.992
3072 1.000 1.000 1.000

Table 11 - Normalized results for Windows XP Service Pack 2 as a function of RAM. The
benchmarks shown here are the ones from the integer component of the cpu2000 suite that best
isolate the memory subsystem.

Figure 17 - Comparison of throughput of virtual machines running Linux as a function of RAM.

The rest of the benchmarks in the cpu2000 suite with Windows XP SP2 as the guest
operating system are shown in Figure 17. Like the benchmarks that isolate the memory
subsystem, none of the other benchmarks in the cpu2000 suite suffered a drop in
throughput as the amount of RAM allocated to the virtual machines increased.

RAM vpr mcf crafty parser eon perlbmk gap vortex twolf
128 0.984 0.966 0.985 0.985 0.987 0.937 0.049 0.966 0.988
256 0.991 0.995 0.987 0.993 0.992 0.982 0.929 0.988 0.988
384 1.000 1.000 1.000 1.000 1.000 0.990 0.995 0.996 0.995
512 0.992 1.000 0.998 1.000 1.000 0.994 1.000 0.994 1.000
640 0.989 0.991 0.989 0.991 0.991 0.985 0.992 0.988 0.988

1024 0.986 0.988 0.988 0.990 0.989 0.983 0.990 0.987 0.995
2048 0.991 0.989 0.989 0.990 0.989 0.986 0.991 0.987 0.994
3072 1.000 0.999 0.995 1.000 0.998 1.000 1.000 1.000 0.995

Table 12 - Normalized results for Windows XP SP2 as a function of RAM. The benchmarks shown
here are the ones from the integer component of the cpu2000 suite that best isolate the memory
subsystem.

Allocating excessive memory did not increase the performance of virtual machines.
When the benchmark isolated the memory subsystem and was run on a virtual machine
running Linux allocating too much memory lowered throughput between 6%-11%. In
contrast allocating excessive amounts of memory to virtual machines running Windows
XP SP2 did not affect performance for any benchmark we ran. Virtual machines should
not be allocated more resources than they are expected to use for their current task

because it will not increase performance and there may be hidden costs for managing
increased amounts of resources.

Conclusions

Hyper-Threading significantly increases throughput for CPU intensive workloads. When
twelve virtual CPUs were benchmarked and Hyper-Threading was enabled the
throughput of single CPU virtual machines increased 21% and the throughput of two
CPU virtual machines increased 23% compared to when Hyper-Threading was disabled.
Since Hyper-Threading is most effective with large numbers of virtual machines a host
that is Hyper-Threading enabled should have at least two virtual CPUs in aggregate for
every physical CPU. Using fewer virtual CPUs reduces the benefits of Hyper-Threading.

Virtual machines should only be allocated one CPU. From empirical results it appears
that Virtual SMP lowers throughput by 10%. Virtual SMP should not be used unless the
problem domain requires it.
Allocating excessive amounts of memory did not increase the performance of virtual
machines. When the benchmark isolated the memory subsystem and was run on a virtual
machine running Linux allocating too much memory lowered throughput between 6%-
12%. In contrast allocating excessive amounts of memory to virtual machines running
Windows XP SP2 did not affect performance for any benchmark we ran. Virtual
machines should not be allocated more resources than they are expected to use for their
current task because it will not increase performance and there may be hidden costs for
managing increased amounts of resources.
In summary:

• Single CPU guest machines scale better than guest machines using virtual SMP.
• Hyper-Threading increases throughput if there are a large number of virtual

CPUs, but makes no difference if the number of virtual CPUs is less than or equal
to the number of physical CPUs.

• Do not allocate excessive resources to virtual machines. The additional resources
may hurt performance.

References
Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield. 2003. “Xen and the Art of Virtualization,” In Proceedings of the
ACM Symposium on Operating Systems Priciples, pp. 164-177.

FreeBench. FreeBench.org, http://www.freebench.org/

Henning, John. 2000. “SPEC CPU2000: Measuring CPU Performance in the New
Millennium,” COMPUTER (May), pp 28-35.

High-Volume Web Site, and VMware. 2004. VMware ESX Server 2: Performance and
Scalability Evaluation,
ftp://ftp.software.ibm.com/software/dw/wes/hvws/esxserver_evaluation.pdf.

Intel. Hyper-Threading Technology, http://www.intel.com/technology/hyperthread/

Smith, J. E., and R. Nair. 2005. Virtual Machines: Versatile Platforms for Systems and
Processes, Moran Kaufmann Publishers, CA.

VMware. 2005A. ESX Server Performance and Resource Management for CPU-
Intensive Workloads, http://www.vmware.com/pdf/ESX2_CPU_Performance.pdf.

VMware. 2005B. TimeKeeping in VMware Virtual Machines,
http://www.vmware.com/pdf/vmware_timekeeping.pdf.

Waldspurger, Carl. 2002. Memory Resource Management in VMware ESX Server,
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation.

Whitaker, A., M. Shaw, and S. Gribble. 2002. “Denali: Lightweight Virtual Machines for
Distributed and Networked Applications,” In Proceedings of the USENIX Annual
Technical Conference.

Appendix A: Benchmarks

FreeBench

Overview

FreeBench is an open-source benchmark. It is totally free and it works on UNIX variants
and Windows systems. The FreeBench project tries to address three issues:

• Openness
• Good balance
• Platform independence

Openness is achieved by the benchmark being open-source. Platform independence is
somewhat achieved because the benchmark will run without modification on most
Windows and Linux systems.

FreeBench consists of four integer programs and three floating point programs. The
programs are a good mix of CPU intensive and memory intensive programs. The integer
programs are: Analyzer, FourInARow, Mason, and pCompress2. The floating point
programs are: PiFFT, DistRay, and Neural.

Analyzer (Integer)

The program was made to analyze memory traces for data dependence. This program is
mainly limited by memory system performance, but that can be hidden by large caches,
smart compilers, and out-of-order processors.

FourInARow (Integer)

This program plays the game “four in a row” with itself and it is memory limited by the
memory system.

Mason (Integer)

This program solves a puzzle and is limited by clock frequency.

pCompress2 (Integer)

This program compresses a file in three stages: Burrows Wheeler blocksorting, run length
encoding, and arithmetic coding. The program is memory intensive, but is also dependent
on the efficiency of the C library used by the compiler.

PiFFT (Floating Point)

This program calculates PI to four million decimal points. It is limited by the efficiency
of floating point calculations and memory intensive.

DistRay (Floating Point)

This program is a ray tracer using random ray distribution. Most of the time of this
program is spent in recursive loops do floating-point arithmetic so this program should be
CPU bound.

Neural (Floating Point)

This program trains a neural network to do character recognition. It is memory intensive
so having quick memory accesses is important for good performance on this benchmark.

SPEC cpu2000

Overview

This is the current gold standard by which other CPU benchmarks are compared. The
Standard Performance Evaluation Corporation (SPEC) has a long history of creating
quality benchmarks. The current version of SPEC’s CPU benchmark uses only programs
that were developed from real user applications and can be used to measure the
performance of the processor, memory and compiler on the tested system.

The CPU2000 benchmark contains two suites and a total of 26 programs. All of our tests
used the integer suite (as opposed to the floating point suite) mainly because of the time
required to run the tests.

The programs in the integer suite are: 164.gzip, 175.vpr, 176.gcc, 181.mcf, 186.crafty,
197.parser, 252.eon, 253.perlbmk, 254.gap, 255.vortex, 256.bzip2, 300.twolf.

164.gzip

This program is the popular data compression program gzip (GNU zip). It uses Lempel-
Ziv coding (LZ77) as its compression algorithm. All work is done in memory to help
isolate the CPU and memory subsystem.

175.vpr (Versatile Place and Route)

This program performs placement and routing in Field-Programmable Gate Arrays. It
starts with random initial positions for the gate arrays and then tries to improve on those
positions through small perturbations.

176.gcc

This benchmark uses gcc Version 2.7.2.2 to create assembly code files for a Motorola
88100. The inlining heuristics have been altered slightly to cause the program to spend
more time doing analysis of the source code.

181.mcf

This program solves a combinatorial optimization problem. Namely, it solves scheduling
problems for a single-depot vehicle in public mass transportation. The main work of th
program is integer and pointer arithmetic.

186.crafty

This is a high performance Computer Chess program that is designed around 64-bit
words. It has a significant number of logical operations and is a good program for
comparing integer/branch prediction/pipe-lining facilities of a processor.

197.parser

This is a parser of English grammar that uses link grammar, an original theory of English
syntax. The program creates a syntactic structure which links pairs of words when given
a sentence.

252.eon

This program is a probabilistic ray tracer based on Kajiya’s 1986 SIGGRAPH conference
paper. It sends a number of 3D lines (rays) into a 3D polygonal model. This program has
similar computational demands compared to a traditional deterministic ray tracer but with
less memory coherence.

253.perlbmk

This program is a cut-down version of Perl V5.005_03, but with most OS-specific
features removed. For the workload perlbmk runs several scripts that do various tasks
such as converting email to HTML and finding perfect number.

254.gap (Groups, Algorithms, and Programming)

This program is a group theory interpreter. It implements a language and library designed
mostly for computing in groups.

255.vortex

This program is a single-user object-oriented database transaction benchmark which
exercises a system kernel coded in integer C. This program is a derivative of a full
OODBMS that has been customized to conform to SPEC CINT2000 guidelines.

256.bzip2

This program is based on Julian Seward’s bzip2 version 0.1. The only difference is that
this program performs all compression and decompression in memory to help isolate the
CPU and memory subsystem.

300.twolf

This program is for determining the placement and global connections for groups of
transistors needed for creating the lithography artwork needed for the production of
microchips. This version of the program has been modified to capture the flavor of many
implementations of simulating annealing. Most execution time is spent in the inner loop
calculations and so the program traverses memory often creating cache misses.

